Applying supervised deep transfer learning convolutional neural networks to the classification of palaeoenvironmental remains

Bidragets beskrivning

This doctoral thesis is an interdisciplinary investigation of the subjectivity inherent in the analysts’ classifications of palaeoenvironmental remains, namely pollen grains and faunal osseous remains. The significant research contributions span from improvements in the post-hoc interpretation of convolutional neural networks, state-of-the-art classification models in pollen classification, and the first application of convolutional neural networks in the classification of bones to species from images.
Visa mer

Startår

2022

Beviljade finansiering

Ilkka Sipilä
15 000 €

Finansiär

Koneen säätiö

Typ av finansiering

Avhandling

Utlysning

Övriga uppgifter

Finansieringsbeslutets nummer

Koneen Säätiö_202102207

Vetenskapsområden

Historia och arkeologi

Temaområden

Tietotekniikka

Nyckelord

Arkeologia, Arkeologisten esineiden tunnistus, Automaatio, Tieteidenvälinen tutkimus, Koneoppiminen

Identifierade teman

ecology, species