Applying supervised deep transfer learning convolutional neural networks to the classification of palaeoenvironmental remains
Bidragets beskrivning
This doctoral thesis is an interdisciplinary investigation of the subjectivity inherent in the analysts’ classifications of palaeoenvironmental remains, namely pollen grains and faunal osseous remains. The significant research contributions span from improvements in the post-hoc interpretation of convolutional neural networks, state-of-the-art classification models in pollen classification, and the first application of convolutional neural networks in the classification of bones to species from images.
Visa merStartår
2022
Beviljade finansiering
Ilkka Sipilä
15 000 €
Övriga uppgifter
Finansieringsbeslutets nummer
Koneen Säätiö_202102207
Vetenskapsområden
Historia och arkeologi
Temaområden
Tietotekniikka
Nyckelord
Arkeologia, Arkeologisten esineiden tunnistus, Automaatio, Tieteidenvälinen tutkimus, Koneoppiminen
Identifierade teman
ecology, species