Uncovering patterns in cancer cells with visual representation learning
Bidragets beskrivning
One of the biggest challenges in machine learning is to learn generalizable models from limited amounts of annotated data as creating annotated data is extremely costly and may limit novel findings. In this research project we study novel solutions to the challenge in the field of microscopy imaging of cancer cells using weakly-supervised and unsupervised learning. The developed methods and learned models will be applied in cancer cells and tissue studies to uncover unknown phenotypes and predictive biomarkers that may be clinically relevant for cancer patient survival. The outcome of the project will provide new knowledge in machine learning and enable solutions for various biological and medical questions regarding cancer function and treatment. The project will be done at the Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki.
Visa merStartår
2021
Slutår
2026
Beviljade finansiering
Andra beslut
359907
Akademiforskarens forskningskostnader(2024)
159 973 €
346604
Akademiforskarens forskningskostnader(2021)
240 000 €
Finansiär
Finlands Akademi
Typ av finansiering
Akademiforskare
Utlysning
Övriga uppgifter
Finansieringsbeslutets nummer
340273
Vetenskapsområden
Data- och informationsvetenskap
Forskningsområden
Tietojenkäsittelytieteet
Identifierade teman
cancer