Uncovering patterns in cancer cells with visual representation learning

Bidragets beskrivning

One of the biggest challenges in machine learning is to learn generalizable models from limited amounts of annotated data as creating annotated data is extremely costly and may limit novel findings. In this research project we study novel solutions to the challenge in the field of microscopy imaging of cancer cells using weakly-supervised and unsupervised learning. The developed methods and learned models will be applied in cancer cells and tissue studies to uncover unknown phenotypes and predictive biomarkers that may be clinically relevant for cancer patient survival. The outcome of the project will provide new knowledge in machine learning and enable solutions for various biological and medical questions regarding cancer function and treatment. The project will be done at the Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki.
Visa mer

Startår

2021

Slutår

2026

Beviljade finansiering

Lassi Paavolainen Orcid -palvelun logo
447 650 €

Andra beslut

359907
Akademiforskarens forskningskostnader(2024)
159 973 €
346604
Akademiforskarens forskningskostnader(2021)
240 000 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiforskare

Övriga uppgifter

Finansieringsbeslutets nummer

340273

Vetenskapsområden

Data- och informationsvetenskap

Forskningsområden

Tietojenkäsittelytieteet

Identifierade teman

cancer