Causal discovery in pharmacoepidemiology – bridging machine learning and epidemiology

Bidragets beskrivning

Large amounts of observational medical data in the Finnish registries provide unique opportunities for studying the effects of common prescription drugs on diseases. The purpose of this project is to combine novel methods from the field of causal machine learning with classic causal inference methods from epidemiology in order to develop a framework for causal discovery using nationwide Finnish data on prescription drug use and diseases. The project aims to increase our understanding of how drugs work by discovering new unknown side-effects and beneficial effects. Discovery of new beneficial effects might lead to the repurposing of existing drugs for new indications. The project will also evaluate key existing unresolved questions around the effects of drugs.
Visa mer

Startår

2021

Slutår

2024

Beviljade finansiering

Sakari Jukarainen Orcid -palvelun logo
287 519 €

Finansiär

Finlands Akademi

Typ av finansiering

Forskardoktorer

Övriga uppgifter

Finansieringsbeslutets nummer

341747

Forskningsområden

Kliiniset lääketieteet

Identifierade teman

public health, occupational health