Multipartite network-based models for precision medicine

Bidragets beskrivning

From the drug discovery perspective, combination therapy is recommended in cancer due to efficiency and safety compared to the common cytotoxic and single-targeted monotherapies. However, identifying effective drug combinations is time and cost consuming. Here, I present a novel strategy of predicting potential drug combination and patient subclasses by constructing multipartite networks using drug response data. This project involves network pharmacology modeling, flow cytometry-based drug response, and thermal proteomics to provide the mechanism of action of drugs and drug combinations for a systems-level understanding of cancer.
Visa mer

Startår

2020

Slutår

2024

Beviljade finansiering

Mohieddin Jafari Orcid -palvelun logo
488 301 €

Finansiär

Finlands Akademi

Typ av finansiering

Akademiprojekt

Övriga uppgifter

Finansieringsbeslutets nummer

332454

Vetenskapsområden

Biomedicinska vetenskaper

Forskningsområden

Biolääketieteet

Temaområden

Nuori tutkijasukupolvi 2019

Identifierade teman

cancer