Adverse Weather Kitti 360

Beskrivning

New Dataset: Adverse Weather-Augmented Kitti 360 This dataset enhances the KITTI 360 dataset by adding simulated snow, rain, and fog effects to the original clear-weather scans captured by the Velodyne HDL-64 LiDAR sensor. This allows researchers to evaluate their algorithms for tasks like lidar odometry, SLAM, navigation, and 3D object detection under challenging weather conditions. Scenarios: 9 long-term driving sequences with post-processed GNSS/IMU ground truth localization data. Data per Scan: Points include x, y, z coordinates, intensity, ring/channel information, and a normalized azimuth angle representing time. Weather Masks: Each scan includes a mask that identifies points affected by simulated weather (signal attenuation). Augmented Scans: Three compressed versions (rain, fog, and snow) are provided for each scenario, encoded as binary float32. Original Scans: Downloadable from the KITTI-360 dataset. Data Access: A C++/Python code example demonstrates how to read the data format. This dataset provides a valuable resource for researchers developing robust algorithms that function effectively in adverse weather conditions.
Visa mer

Publiceringsår

2024

Typ av data

Upphovspersoner

FGI Dept. of Remote sensing and photogrammetry - Utgivare

Heikki Hyyti - Kurator

Eugeniu Vezeteu - Rättighetsinnehavare, Upphovsperson

Projekt

Övriga uppgifter

Vetenskapsområden

Geovetenskaper; El-, automations- och telekommunikationsteknik, elektronik

Språk

engelska

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

Snow, Adverse weather, Autonomous driving, Fog, Kitti-360

Ämnesord

självkörande bilar, 3D-skannrar, autonoma system

Temporal täckning

undefined

Relaterade till denna forskningsdata