StarDist_BF_cancer_cell_dataset_20x

Beskrivning

This repository contains a StarDist deep learning model and its training and validation datasets designed for segmenting cancer cells perfused over an endothelial cell monolayer captured at 20x magnification. Using computational methods, the initial dataset of 20 manually annotated images was augmented to 160 paired images. The model was trained over 400 epochs and achieved an average F1 Score of 0.921, demonstrating high accuracy in cell segmentation tasks. Specifications Model: StarDist for cancer cell segmentation on endothelial cells (20x magnification) Training Dataset: Number of Original Images: 20 paired brightfield microscopy images and label masks Microscope: Nikon Eclipse Ti2-E, 20x objective Data Type: Brightfield microscopy images with manually segmented masks File Format: TIFF (.tif) Brightfield Images: 16-bit Masks: 8-bit Image Size: 1024 x 1022 pixels (Pixel size: 650 nm) Training Parameters: Epochs: 400 Patch Size: 992 x 992 pixels Batch Size: 2 Performance: Average F1 Score: 0.921 Average IoU: 0.793 Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki) Reference Biorxiv paper
Visa mer

Publiceringsår

2024

Typ av data

Upphovspersoner

University of Turku

Gautier Follain - Upphovsperson

Johanna Ivaska - Upphovsperson

Zenodo - Utgivare

Guillaume Jacquemet Orcid -palvelun logo - Upphovsperson

Joanna Pylvänäinen Orcid -palvelun logo - Upphovsperson

Sujan Ghimire Orcid -palvelun logo - Upphovsperson

Projekt

Övriga uppgifter

Vetenskapsområden

Biokemi, cell- och molekylärbiologi

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

cells, Biochemistry and Cell Biology

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata