StarDist_HUVEC_nuclei_dataset

Beskrivning

This repository contains a StarDist deep learning model and its training and validation datasets for segmenting endothelial nuclei while ignoring cancer cells. The cancer cells were perfused over an endothelial cell monolayer. The initial dataset consisted of 17 images, where cancer cell nuclei were manually removed after segmentation with the StarDist Versatile Nuclei model. This dataset was augmented to 68 paired images using computational techniques like rotation and flipping. The model was trained for 200 epochs, achieving an average F1 Score of 0.976, demonstrating high accuracy in segmenting endothelial nuclei while excluding cancer cells. Specifications Model: StarDist for segmenting endothelial nuclei while ignoring cancer cells Training Dataset: Number of Original Images: 17 paired predictions of nuclei and label images Augmented Dataset: Expanded to 68 paired images using rotation and flipping Source Image Generation: Generated using a pix2pix model trained to predict nuclei from brightfield images of cancer cells on top of an endothelium (DOI: 10.5281/zenodo.10617532) Target Image Generation: Masks obtained via manual segmentation File Format: TIFF (.tif) Brightfield Images: 8-bit Masks: 8-bit Image Size: 1024 x 1022 pixels (uncalibrated) Training Parameters: Epochs: 200 Patch Size: 1024 x 1024 pixels Batch Size: 2 Performance: Average F1 Score: 0.976 Average IoU: 0.927 Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki) Reference Biorxiv paper
Visa mer

Publiceringsår

2024

Typ av data

Upphovspersoner

University of Turku

Gautier Follain - Upphovsperson

Johanna Ivaska - Upphovsperson

Zenodo - Utgivare

Guillaume Jacquemet Orcid -palvelun logo - Upphovsperson

Joanna Pylvänäinen Orcid -palvelun logo - Upphovsperson

Sujan Ghimire Orcid -palvelun logo - Upphovsperson

Projekt

Övriga uppgifter

Vetenskapsområden

Biokemi, cell- och molekylärbiologi

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

Biochemistry and Cell Biology

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata