StarDist_AsPC1_Lifeact

Beskrivning

This repository includes a StarDist deep learning model designed for segmenting AsPC1 cells labeled with Lifeact from fluorescence microscopy images. The model distinguishes individual AsPC1 cells within clusters and separates them from the background. The model was trained on a small dataset and achieved an Intersection over Union (IoU) score of 0.884 and an F1 Score of 0.967, indicating high accuracy in cell segmentation. Specifications Model: StarDist for segmenting AsPC1 cells in fluorescence microscopy images Training Dataset: Number of Images: 10 paired fluorescence microscopy images and label masks Microscope: Spinning disk confocal microscope (3i CSU-W1) with a 20x objective, NA 0.8 Data Type: Fluorescence microscopy images of the AsPC1 Lifeact channel with manually segmented masks File Format: TIFF (.tif) Fluorescence Images: 16-bit Masks: 8-bit Image Size: 1024 x 1024 pixels (Pixel size: 0.6337 x 0.6337 µm²) Model Capabilities: Segment AsPC1 Cells: Detects individual AsPC1 cells from a cluster and separates them from the background Measure Intensity: Enables measurement of CD44, ICAM1, ICAM2, or Fibronectin intensity under individual cells in respective channels Performance: Average IoU: 0.884 Average F1 Score: 0.967 Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki) Reference Biorxiv paper
Visa mer

Publiceringsår

2024

Typ av data

Upphovspersoner

University of Turku

Gautier Follain - Upphovsperson

Johanna Ivaska - Upphovsperson

Zenodo - Utgivare

Guillaume Jacquemet Orcid -palvelun logo - Upphovsperson

Joanna Pylvänäinen Orcid -palvelun logo - Upphovsperson

Sujan Ghimire Orcid -palvelun logo - Upphovsperson

Projekt

Övriga uppgifter

Vetenskapsområden

Biokemi, cell- och molekylärbiologi

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

Biochemistry and Cell Biology

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata