Data for manuscript "Emulator-based calibration of a dynamic grassland model using recurrent neural networks and Hamiltonian Monte Carlo" by Aakula et al.
Beskrivning
Data and python code for the manuscript "Emulator-based calibration of a dynamic grassland model using recurrent neural networks and Hamiltonian Monte Carlo", for performing emulator hyperparameter optimization and training. Python file optimize_LSTM_emulator.py can be used either for training an LSTM emulator with predefined hyperparameters or to optimize hyperparameters from a given hyperparameter space. The training data for each fold is included in the files of shape training_data_fold_{}.parquet. The data is obtained from model simulations, including model inputs (meteorological forcings obtained from ERA5 data), model parameters (sampled from distributions defined in the manuscript) and model (BASGRA) outputs. Text file examples.txt gives instructions and examples on running the script.
Visa merPubliceringsår
2025
Typ av data
Upphovspersoner
Meteorologiska Institutet - Utgivare
Julius Vira - Medarbetare
Viivi Aakula - Medarbetare, Upphovsperson
Projekt
Övriga uppgifter
Vetenskapsområden
Geovetenskaper
Språk
engelska
Öppen tillgång
Öppet