Data for paper "Automated Structure Discovery for Scanning Tunneling Microscopy"

Beskrivning

Contents of the dataset: band.h5 -- keys are molecule indices, each molecule has the following keys: eigs: KS eigenvalues for each state coefs: KS eigenvectors for each basis set xyz: atomic positions Z: atomic species qs: mulliken point charges rotations_210611.pickle -- keys train/val/test Each set is a dict containing id -- rotation pairs rotations are 3x3 numpy arrays disks.pt -- a pretrained model for Atomic Disks predictions
Visa mer

Publiceringsår

2024

Typ av data

Upphovspersoner

Department of Applied Physics

Lauri Kurki - Upphovsperson

Niko Oinonen Orcid -palvelun logo - Upphovsperson

Zenodo - Utgivare

Projekt

Övriga uppgifter

Vetenskapsområden

Fysik

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata