StarDist_BF_Neutrophil_dataset

Beskrivning

This repository includes a StarDist deep learning model and its training and validation datasets for detecting neutrophils perfused over an endothelial cell monolayer. The model was trained on 36 manually annotated images, achieving an average F1 Score of 0.969. The dataset and model are intended for use in biomedical research, particularly for analyzing interactions between neutrophils and endothelial cells. Specifications Model: StarDist for neutrophil detection on endothelial cells Training Dataset: Number of Images: 36 paired brightfield microscopy images and label masks Microscope: Nikon Eclipse Ti2-E, 20x objective Data Type: Brightfield microscopy images with manually segmented masks File Format: TIFF (.tif) Brightfield Images: 16-bit Masks: 8-bit Image Size: 1024 x 1022 pixels (Pixel size: 650 nm) Training Parameters: Epochs: 400 Patch Size: 992 x 992 pixels Batch Size: 2 Performance: Average F1 Score: 0.969 Average IoU: 0.914 Model Training: Conducted using ZeroCostDL4Mic (https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki) Reference Biorxiv paper
Visa mer

Publiceringsår

2024

Typ av data

Upphovspersoner

University of Turku

Gautier Follain - Upphovsperson

Johanna Ivaska - Upphovsperson

Zenodo - Utgivare

Guillaume Jacquemet Orcid -palvelun logo - Upphovsperson

Joanna Pylvänäinen Orcid -palvelun logo - Upphovsperson

Sujan Ghimire Orcid -palvelun logo - Upphovsperson

Projekt

Övriga uppgifter

Vetenskapsområden

Biokemi, cell- och molekylärbiologi

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

Biochemistry and Cell Biology, neutrophils

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata