Glide HTVS docking results of Enamine REAL lead-like library (1.56 billion compounds) for targets SurA and GAK

Beskrivning

This dataset is composed of two sets of docking results for the 1.56 billion compounds of the Enamine REAL (ER) lead-like library (obtained March 2021). The intended use of the data is to serve as a giga-scale benchmarking dataset, e.g. for machine learning approaches. Both docking studies were performed with Schrödinger Suite 2021-1 Glide (v9), using the HTVS protocol.  [1] Results for the SurA target (receptor based on PDB-ID 1m5y, chain A): Enamine_REAL_lead-like_SurA_glide_HTVS_docking_scores.csv.gz [2] Results for the GAK target (receptor PDB-ID 4y8d, chain A; hydrogen-bonding constraint on Cys126 backbone amide hydrogen was used): Enamine_REAL_lead-like_GAK_glide_HTVS_docking_scores.csv.gz  Result files are gzipped, white-space separated text files with the following fields: SMILES, compound title (ER identifier), (Glide) docking score. Compounds that failed to produce any conformers in ligand preparation or failed to produce a pose during docking for any reason were assigned a score 5.0.
Visa mer

Publiceringsår

2023

Typ av data

Upphovspersoner

Östra Finlands universitet - Rättighetsinnehavare

Farmasian laitos

Antti Poso Orcid -palvelun logo - Medarbetare

Ina Pöhner Orcid -palvelun logo - Medarbetare, Upphovsperson, Kurator, Utgivare

Toni Sivula Orcid -palvelun logo - Medarbetare, Upphovsperson

Projekt

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap; Farmaci

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

drug discovery, machine learning, benchmark, docking, Enamine, GAK, giga-scale, Glide, SurA, virtual screening

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata