Tracking the Occluded Indoor Target with Scattered Millimeter Wave Signal

Beskrivning

In our work, we propose an innovative system to accurately infer and track occluded target locations using mmWave beat frequency signals. Our approach combines a classic direction-finding method with advanced deep learning techniques, specifically a convolutional neural network (CNN), to enhance detection capabilities. The dataset includes raw beat frequency signal data from the TI IWR6843ISK rev B with TI mmWAVEICBOOST and the TI DCA1000EVM capture board. Corresponding ground truth data (target position) from the Realsense L515 RGB-D camera is also provided. Additionally, we include middle-processed data, post-processed data for training the CNN, and comprehensive scripts for processing, CNN training, CNN testing, and data visualization. This complete package ensures a robust system for improved accuracy in detecting and tracking targets, even in occluded scenarios.
Visa mer

Publiceringsår

2024

Typ av data

Upphovspersoner

Department of Electrical Engineering and Automation

Bo Tan - Upphovsperson

Yinda Xu Xu - Upphovsperson

IEEE DataPort - Utgivare

Tampere University - Medarbetare

Projekt

Övriga uppgifter

Vetenskapsområden

El-, automations- och telekommunikationsteknik, elektronik

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata