Critical Assessment of Small Molecule Identification 2016: automated methods

Beskrivning

Abstract Background The fourth round of the Critical Assessment of Small Molecule Identification (CASMI) Contest ( www.casmi-contest.org ) was held in 2016, with two new categories for automated methods. This article covers the 208 challenges in Categories 2 and 3, without and with metadata, from organization, participation, results and post-contest evaluation of CASMI 2016 through to perspectives for future contests and small molecule annotation/identification. Results The Input Output Kernel Regression (CSI:IOKR) machine learning approach performed best in “Category 2: Best Automatic Structural Identification—In Silico Fragmentation Only”, won by Team Brouard with 41% challenge wins. The winner of “Category 3: Best Automatic Structural Identification—Full Information” was Team Kind (MS-FINDER), with 76% challenge wins. The best methods were able to achieve over 30% Top 1 ranks in Category 2, with all methods ranking the correct candidate in the Top 10 in around 50% of challenges. This success rate rose to 70% Top 1 ranks in Category 3, with candidates in the Top 10 in over 80% of the challenges. The machine learning and chemistry-based approaches are shown to perform in complementary ways. Conclusions The improvement in (semi-)automated fragmentation methods for small molecule identification has been substantial. The achieved high rates of correct candidates in the Top 1 and Top 10, despite large candidate numbers, open up great possibilities for high-throughput annotation of untargeted analysis for “known unknowns”. As more high quality training data becomes available, the improvements in machine learning methods will likely continue, but the alternative approaches still provide valuable complementary information. Improved integration of experimental context will also improve identification success further for “real life” annotations. The true “unknown unknowns” remain to be evaluated in future CASMI contests. Graphical abstract .
Visa mer

Publiceringsår

2017

Typ av data

Upphovspersoner

Department of Computer Science

Arpana Vaniya - Upphovsperson

Bart Ghesquière - Upphovsperson

Celine Brouard - Upphovsperson

Christoph Ruttkies - Upphovsperson

Dries Verdegem - Upphovsperson

Emma L. Schymanski - Upphovsperson

Felicity Allen - Upphovsperson

Hiroshi Tsugawa - Upphovsperson

Huibin Shen - Upphovsperson

Juho Rousu Orcid -palvelun logo - Upphovsperson

Kai Dührkop - Upphovsperson

Martin Krauss - Upphovsperson

Oliver Fiehn - Upphovsperson

Sebastian Böcker - Upphovsperson

Steffen Neumann - Upphovsperson

Tanvir Sajed - Upphovsperson

Tobias Kind - Upphovsperson

Friedrich Schiller University Jena - Medarbetare

Helmholtz Centre for Environmental Research - Medarbetare

ICRI - Medarbetare

King Abdulaziz University - Medarbetare

Leibniz Institute of Plant Biochemistry - Medarbetare

RIKEN (Japan) - Medarbetare

Swiss Federal Institute of Aquatic Science and Technology - Medarbetare

University of Alberta - Medarbetare

University of California - Medarbetare

figshare - Utgivare

Projekt

Övriga uppgifter

Vetenskapsområden

Data- och informationsvetenskap

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata