Replication Data for: Measurement Error When Surveying Issue Positions: A MultiTrait MultiError Approach

Beskrivning

Voters’ issue preferences have been shown to be key determinants of vote choice, making it essential to reduce measurement error in responses to issue questions in surveys. This study uses a MultiTrait MultiError approach to assess the data quality of issue questions by separating four sources of variation: trait, acquiescence, method, and random error. The questions generally achieved moderate data quality, with 76% on average representing valid variance. Random error made up the largest proportion of error (23%). Error due to method and acquiescence was small. We found that 5-point scales are generally better than 11-point scales, while answers by respondents with lower political sophistication achieved lower data quality. The findings indicate a need to focus on decreasing random error when studying issue positions.
Visa mer

Publiceringsår

2025

Typ av data

Upphovspersoner

Harvard Dataverse - Utgivare

Helsinki University

Peter Söderlund - Upphovsperson

The University of Manchester

Alexandru Cernat - Upphovsperson

Kim Backström Orcid -palvelun logo - Medarbetare, Upphovsperson

Rasmus Siren - Upphovsperson

Projekt

Övriga uppgifter

Vetenskapsområden

Statsvetenskap

Språk

Öppen tillgång

Öppet

Licens

Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication

Nyckelord

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata