DScribe: Library of descriptors for machine learning in materials science

Beskrivning

DScribe is a software package for machine learning that provides popular feature transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the application of machine learning for atomistic property prediction by providing user-friendly, off-the-shelf descriptor implementations. The package currently contains implementations for Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Function (ACSF) and Smooth Overlap of Atomic Positions (SOAP). Usage of the package is illustrated for two different applications: formation energy prediction for solids and ionic charge prediction for atoms in organic molecules. The package is freely available under the open-source Apache License 2.0.
Visa mer

Publiceringsår

2019

Typ av data

Upphovspersoner

Department of Applied Physics

Adam S. Foster Orcid -palvelun logo - Upphovsperson

David Z. Gao - Upphovsperson

Eiaki V. Morooka - Upphovsperson

Filippo Federici Canova - Upphovsperson

Lauri Himanen - Upphovsperson

Marc O.J. Jäger - Upphovsperson

Patrick Rinke Orcid -palvelun logo - Upphovsperson

Yashasvi S. Ranawat - Upphovsperson

Mendeley Data - Utgivare

Nanolayers Research Computing Ltd - Medarbetare

Projekt

Övriga uppgifter

Vetenskapsområden

Nanoteknologi

Språk

Öppen tillgång

Öppet

Licens

Apache Software License 2.0

Nyckelord

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata