Integration of 3D-printed middle ear models and middle ear prostheses in otosurgical training

Beskrivning

Abstract Background In otosurgical training, cadaveric temporal bones are primarily used to provide a realistic tactile experience. However, using cadaveric temporal bones is challenging due to their limited availability, high cost, and potential for infection. Utilizing current three-dimensional (3D) technologies could overcome the limitations associated with cadaveric bones. This study focused on how a 3D-printed middle ear model can be used in otosurgical training. Methods A cadaveric temporal bone was imaged using microcomputed tomography (micro-CT) to generate a 3D model of the middle ear. The final model was printed from transparent photopolymers using a laser-based 3D printer (vat photopolymerization), yielding a 3D-printed phantom of the external ear canal and middle ear. The feasibility of this phantom for otosurgical training was evaluated through an ossiculoplasty simulation involving ten otosurgeons and ten otolaryngology–head and neck surgery (ORL-HNS) residents. The participants were tasked with drilling, scooping, and placing a 3D-printed partial ossicular replacement prosthesis (PORP). Following the simulation, a questionnaire was used to collect the participants' opinions and feedback. Results A transparent photopolymer was deemed suitable for both the middle ear phantom and PORP. The printing procedure was precise, and the anatomical landmarks were recognizable. Based on the evaluations, the phantom had realistic maneuverability, although the haptic feedback during drilling and scooping received some criticism from ORL-HNS residents. Both otosurgeons and ORL-HNS residents were optimistic about the application of these 3D-printed models as training tools. Conclusions The 3D-printed middle ear phantom and PORP used in this study can be used for low-threshold training in the future. The integration of 3D-printed models in conventional otosurgical training holds significant promise.
Visa mer

Publiceringsår

2024

Typ av data

Upphovspersoner

Department of Energy and Mechanical Engineering

Antti Mäkitie - Upphovsperson

Mika Salmi Orcid -palvelun logo - Upphovsperson

Saku T. Sinkkonen - Upphovsperson

Sini Lähde - Upphovsperson

Yasmin Hirsi - Upphovsperson

Helsinki University Hospital - Medarbetare

King´s College London - Medarbetare

University of Helsinki - Medarbetare

figshare - Utgivare

Projekt

Övriga uppgifter

Vetenskapsområden

Övrig teknik och teknologi

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata