Data from: Rhythmicity of neuronal oscillations delineates their cortical and spectral architecture

Beskrivning

Neuronal oscillations are commonly analyzed with power spectral methods that quantify signal amplitude, but not rhythmicity or 'oscillatoriness' per se. Here we introduce a new approach, the phase-autocorrelation function (pACF), for direct quantification of rhythmicity. We applied pACF to human intracerebral stereo-electroencephalography (SEEG) and magnetoencephalography (MEG) data and uncovered a spectrally and anatomically fine-grained cortical architecture in the rhythmicity of single- and multi-frequency neuronal oscillations. Evidencing the functional significance of rhythmicity, we found it to be a prerequisite for long-range synchronization in resting-state networks and to be dynamically modulated during event-related processing. We also extended the pACF approach to measure 'burstiness' of oscillatory processes and characterized regions with stable and bursty oscillations. These findings show that rhythmicity is double-dissociable from amplitude and constitutes a functionally relevant and dynamic characteristic of neuronal oscillations.
Visa mer

Publiceringsår

2024

Typ av data

Upphovspersoner

Department of Neuroscience and Biomedical Engineering

Felix Siebenhühner - Upphovsperson

Gabriele Arnulfo - Upphovsperson

Joonas Juvonen - Upphovsperson

Matias Palva Orcid -palvelun logo - Upphovsperson

Satu Palva - Upphovsperson

Vladislav Myrov Orcid -palvelun logo - Upphovsperson

University of Genoa - Medarbetare

University of Glasgow - Medarbetare

University of Helsinki - Medarbetare

Zenodo - Utgivare

Projekt

Övriga uppgifter

Vetenskapsområden

Neurovetenskaper

Språk

Öppen tillgång

Öppet

Licens

Creative Commons CC0 1.0 Universal (CC0 1.0) Public Domain Dedication

Nyckelord

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata