Machine learning interatomic potential for studying radiation effects in germanium - The dataset
Beskrivning
This dataset supplies training data for a Gaussian Approximation Potential for germanium, developed specifically for radiation damage studies. It encompasses 451 structures from dimers, multiple bulk crystal phases, liquid configurations at various temperatures, a diverse range of defect structures, and other relevant configurations. All structures are stored in extended XYZ format, with each configuration annotated by total energy, atomic forces, and virial stresses calculated via DFT at the PBE level using VASP. Additional details on dataset generation and DFT calculations are provided in the published paper.
Visa merPubliceringsår
2025
Typ av data
Upphovspersoner
Ali Hamedani - Medarbetare
Andrea E. Sand - Medarbetare
Ruoyan Jin - Upphovsperson, Utgivare
Projekt
Övriga uppgifter
Vetenskapsområden
Fysik
Språk
Öppen tillgång
Öppet