Predicting Intersystem Crossing Rate Constants of Alkoxy-Radical Pairs with Structure-Based Descriptors and Machine Learning
Beskrivning
This repository contains datasets and machine learning code for predicting intersystem crossing (ISC) rate constants in radical pair systems. The data includes geometries, spin-orbit couplings, excitation energies, and ISC rates for 98,082 conformations of ten different alkoxy radical dimers. Three ML models—Random Forest, CatBoost, and a feed-forward neural network—were trained using geometrical descriptors as inputs. Scripts for hyperparameter optimization, feature selection, and evaluation are also provided.
Visa merPubliceringsår
2025
Typ av data
Upphovspersoner
Munich Center for Machine Learning - Medarbetare
Technical University of Munich - Medarbetare
University of Helsinki - Medarbetare
Zenodo - Utgivare
Projekt
Övriga uppgifter
Vetenskapsområden
Fysik
Språk
Öppen tillgång
Öppet