Predicting Intersystem Crossing Rate Constants of Alkoxy-Radical Pairs with Structure-Based Descriptors and Machine Learning

Beskrivning

This repository contains datasets and machine learning code for predicting intersystem crossing (ISC) rate constants in radical pair systems. The data includes geometries, spin-orbit couplings, excitation energies, and ISC rates for 98,082 conformations of ten different alkoxy radical dimers. Three ML models—Random Forest, CatBoost, and a feed-forward neural network—were trained using geometrical descriptors as inputs. Scripts for hyperparameter optimization, feature selection, and evaluation are also provided.
Visa mer

Publiceringsår

2025

Typ av data

Upphovspersoner

Department of Applied Physics

Hilda Sandström Orcid -palvelun logo - Upphovsperson

Kai Puolamäki - Upphovsperson

Patrick Rinke Orcid -palvelun logo - Upphovsperson

Rashid Valiev - Upphovsperson

Rinat Nasibullin - Upphovsperson

Theo Kurtén - Upphovsperson

Munich Center for Machine Learning - Medarbetare

Technical University of Munich - Medarbetare

University of Helsinki - Medarbetare

Zenodo - Utgivare

Projekt

Övriga uppgifter

Vetenskapsområden

Fysik

Språk

Öppen tillgång

Öppet

Licens

Creative Commons Attribution 4.0 International (CC BY 4.0)

Nyckelord

Ämnesord

Temporal täckning

undefined

Relaterade till denna forskningsdata